DOWNSTATE AIR SOURCE HEAT PUMP DEMONSTRATION

THE LEVY PARTNERSHIP CENTSIBLE HOUSE FRONTIER ENERGY

JANUARY 2022

The Levy Partnership

DOWNSTATE DEMO

- 20 Sites
- Brooklyn, Queens, Bronx, Yonkers, Long Island

Goals:

- Understand and demonstrate viability costs and savings
- Increase awareness, and confidence
- Market exposure
- Provide resources for NYSERDA to promote benefits

SITES

- 1-3 family buildings
- Owner-occupied
 with rental units
- Tight urban lots
- Most masonry attached; some wood frame SFD
- Most gas, some oil
- Boilers and window AC
- Old buildings, minimal insulation

RETROFIT SCOPE

- Full boiler replacement
- Some weatherization
- Low-ambient equipment (NEEP cold climate air source heat pump listing)

HEAT PUMPS

- 3-4 condensing units
- 6-12 air handlers
- Wall mounted mini and multi-splits
- A few ducted units
- Mostly Mitsubishi/Fujitsu equipment

Mitsubishi	Fujitsu				
Outdoor unit	Outdoor unit				
MXZ3C24NAHZ	AOU12RLS3H				
MXZ4C36NAHZ	AOU18RLXFZH				
MXZ3C30NAHZ	AOU24RLXFZH				
MXZ5C42NAHZ	AOU36RLXFZH				
MXZ4C36NAHZ	AOU36RLAVM				
Indoor units	Indoor units				
MSZFH06NA	ASU7RLP1				
MSZFH09NA	ASU9RLP1				
MSZFH12NA	ASU12RLP1				
MSZFH15NA	ASU18RLP1				
MSZFH18NA	ASU24RLP1				

ECONOMICS

- \$10,000 to \$50,000 project value
- Up to \$8,000 in incentives/discounts/ rebates special to demo
- Energy cost savings:
 -\$939 to \$1,597
- Reason for purchase increase home value, "central" cooling and solve poor heating distribution issues

INCREASED COMFORT

PREMIUM VALUE

- A comprehensive approach to improve energy efficiency returns more sustainable benefits.
- Able to set room temperature individually.
- Homes with central AC and improved air sealing and insulation have attractive payback during resale, Benefits could range from high retention of investment value to increased equity.

SITE RESULTS

- Description of envelope improvements
- Costs by category
- Photo of building
- Equipment listing with capacity compared to load calculations
- Floor plan with equipment location
- Plots with before and after fuel use and utility bills
- Table summarizing pre and post costs and usage and implied COP
- Space temperatures
- Load lines

Envelope Improvements

Envelope Improvement	Details
Air Sealing	Reduce overall air leakage of heated area from 1.75 ACH to 1.25ACH.
Rim Joist	Upgrade 180 square feet of existing rim joist to 2" High Density Foam, 1.5" Wood, 0.5" Wood Siding, R-15
Second floor attic insulation	Upgrade 320 square feet of existing ceiling to Gyp Bd, 2x6 16" OC, 6" cellulose, R-19

Costs

ltem	Cost
Heat pump equipment (10 zones)	15,000
Heat pump labor	20,783
Total heat pump	35,783
Cost per ton	4,647
Cost per zone	3,578
Envelope materials + labor	10,736
Total job	46,519

	PRE	POST	Savings
Costs	\$4,035	\$3,257	\$980
Oil (Gal/yr) \$2.45/gal	1,649	260	1,389
Electric (kWh/yr) \$0.20/kwh		13,110	(13,110)
Implied COP		2.2	

Indoor Space Temperatures

Envelope Improvements

Envelope Improvement	Details
Air sealing	Reduce overall air leakage of heated area from 4,742 CFM50 to 3,000 CFM50
Rim Joist Insulation	Rim joist upgrade, 122 sq ft, 2" high density foam, 1.5" wood, 0.5" wood, siding, R15

Costs

ltem	Cost
Heat pump equipment (5 zones)	12,083
Heat pump labor	7,917
Total heat pump	20,000
Cost per ton	4,762
Cost per zone	4,000
Envelope materials + labor	0
Total job	20,000

SITE 19

		RHVAC si	zing calcs	Outo	loor unit		Indoor units			
Floor	Room	Cooling	Heating	Model	Cooling	Heating	Model	Cooling	Heating	
	Living Room						MSZ-FH06NA	6,000	8,700	
1st	Back bedroom 1						MSZ-FH06NA	6,000	8,700	
	Back bedroom 2						MSZ-FH06NA	6,000	8,700	
	Total	15,367	23,415		22,000	25,000	indoor unit total	18,000	26,100	
	Front Bedrooms						MSZ-FH12NA	12,000	13,600	
2nd	Back Bedroom			MXZ-3C30NAHZ			MSZ-FH12NA	12,000	13,600	
	Total	22,307	30,197		28,400	28,600	indoor unit total	24,000	27,200	
	Btu	37,674	53,612		50,400	53,600		42,000	53,300	
Total	Tons	3.1	4.5		4.2	4.5		3.5	4.4	

Floor

BA

Floor

SITE 19

There was no post-retrofit oil use as indicated above. However, post-retrofit oil use was included in the analysis to account for DHW use. An electric DHW tank was installed at the time of the ASHP installation.

	PRE	POST	Savings
Costs	\$2,840	\$3,068	\$(228)
Oil (Gal/yr) \$2.45/gal	1,161	0	1,161
Electric (kWh/yr) \$0.20/kwh		15,339	(15,339)
Implied COP		2.4	

Indoor Space Temperatures

The second floor apartment was not accessible at the time of monitoring equipment installation or data retrieval.

Envelope Improvements

Envelope	Detaile
Improvement	Details
Air sealing	Reduce overall air leakage of heated area from 2,373 CFM50 to 1,750 CFM 50
Attic floor & knee wall	Upgrade 709 sqft of existing ceiling to Gyp Bd, 2x8 16" OC, 8" cellulose, R25
Exterior wall insulation	Upgrade 2,865 sqft of existing wall to Gyp Bd 2x4 16" OC cellulose, 1" wood, R12
3rd floor sloped ceiling	Upgrade 249 sqft of existing sloped roof to 2x6 16" OC, 5.5" cellulose, 0.5" wood, asphalt roofing R18

Costs

ltem	Cost
Heat pump equipment (7 zones)	15,576
Heat pump labor	6,000
Total heat pump	21,576
Cost per ton	3,657
Cost per zone	3,082
Envelope materials + labor	13,596
Total job	38,540

SITE 23

15'11

				Equipment Selection					
		Manual J sizing		Outdoor unit			Indoor units		
Floor	Room	Cooling	Heating	Model	Cooling	Heating	Model	Cooling	Heating
Decomont	Basement						ASU15RLF1	14,000	16,300
Basement	Total	6,908	32,897						
	Living Room			AOU36RLXFZ1H			ASU7RLF1	7,000	8,100
1st floor	Kitchen						ASU7RLF1	7,000	8,100
	Total	12,237	11,381		35,200	36,400	Indoor total	28,000	32,500
	Master Bedroom			AOU36RLXFZ1H			ASU7RLF1	7,000	8,100
2nd floor	Bedroom 1						ASU7RLF1	7,000	8,100
2110 11001	Bedroom 2						ASU7RLF1	7,000	8,100
	Total	7,329	6,260						
Attic	Bedroom 3						ASU7RLF1	7,000	8,100
Attic	Total	3,248	3,873		35,200	36,400	Indoor total	28,000	32,400
House Total	BTUH	29,722	54,411		70,400	72,800		56,000	64,900
House Total	Tons	2.5	4.5		5.9	6.1		4.7	5.4

DG 2 x4'

ASHP electric use goes to zero at 58°F. Pre-retrofit oil use was set to 0 when there was no HP operation (solid black line on the plot above).

	PRE	POST	Savings
Costs	\$1,582	\$937	\$645
Oil (Gal/yr) (\$2.45/gallon)	646	0	646
Electric (kWh/yr) (\$0.20/kWh)		4,685	(4,685)
Implied COP		1.8	

Indoor Space Temperatures

SAVINGS SUMMARY

Site	old fuel	Site MMBTU savings	Savings lbs. CO2 emissions	Sa C	of HP only	Savings entire		
1	Gas	51	5,946	\$	52	\$	171	
3	Oil	209	34,022	\$	(355)	\$	767	
5	Gas	188	21,785	\$	(459)	\$	520	
10	Oil	190	30,949	\$	(202)	\$	778	
12 owner	Gas	22	2,489	\$	(158)	\$	9	
12 tenant	Gas	26	3,001	\$	(145)	\$	(62)	
14	Oil	207	33,781	\$	656	\$	1,597	
18	Oil	109	17,811	\$	298	\$	1,381	
19	Oil	158	25,632	\$	(228)	\$	(228)	
21	Gas	62	7,132	\$	(795)	\$	(624)	
23	Oil	89	14,470	\$	(214)	\$	645	
25	Gas	86	9,898	\$	(387)	\$	(178)	
31	Gas	42	4,807	\$	(448)	\$	(448)	
32	Oil	75	12,288	\$	(14)	\$	594	
35	Oil	80	12,954	\$	29	\$	29	
39	Oil	25	4,039	\$	(778)	\$	(778)	
40	Gas	85	9,829	\$	(126)	\$	277	
41	Gas	-8	(1,010)	\$	(306)	\$	(306)	
44	Gas	113	13,104	\$	318	\$	647	
45	Oil	78	12,640	\$	(517)	\$	(151)	
46	Gas	27	3,002	\$	(939)	\$	(939)	
AVG		96	13,979	\$	(221)	\$	200	
AVG Oil (7)	Oil	122	19,859	\$	(132)	\$	463	
Avg Gas (6)	Gas	70	8,099	\$	(309)	\$	(63)	

Savings are annual

SUMMARY COSTS

Costs before incentives and discounts

															Heat	
		Living	He	at pump	He	at pump	He	Heat pump W		Weather-			Heat pump		pump	
Site	Zones	Units	eq	uip. cost	la	bor cost	to	otal cost	ization cost		То	tal cost	t total/zone		ne total/to	
1	6	1	\$	8,290	\$	15,610	\$	23,900	\$	_	\$	23,900	\$	3,983	\$	4,686
3	7	1	\$	11,156	\$	20,992	\$	32,148	\$	5,500	\$	37,648	\$	4,593	\$	5,358
5	10	1	\$	18,024	\$	34,166	\$	52,190	\$	5,500	\$	57,690	\$	5,219	\$	8,698
10	10	2	\$	15,000	\$	20,783	\$	35,783	\$	10,736	\$	46,519	\$	3,578	\$	4,647
12	8	2	\$	12,687	\$	24,443	\$	37,130	\$	10,000	\$	47,130	\$	4,641	\$	5,626
14	7	1	\$	13,530	\$	9,500	\$	23,030	\$	28,431	\$	51,461	\$	3,290	\$	3,715
19	5	2	\$	12,083	\$	7,917	\$	20,000	\$	-	\$	20,000	\$	4,000	\$	4,762
21	4	2	\$	6,555	\$	11,319	\$	17,874	\$	5,500	\$	23,374	\$	4,469	\$	5,766
23	7	1	\$	15,576	\$	6,000	\$	21,576	\$	13,596	\$	35,172	\$	3,082	\$	3,657
25	8	1	\$	10,696	\$	11,304	\$	22,000	\$	7,350	\$	29,350	\$	2,750	\$	3,729
31	7	1	\$	7,429	\$	15,571	\$	23,000	\$	-	\$	23,000	\$	3,286	\$	4,792
32	4	1	\$	5,682	\$	6,318	\$	12,000	\$	3,500	\$	15,500	\$	3,000	\$	4,138
35	6	1	\$	10,200	\$	14,800	\$	25,000	\$	1,000	\$	26,000	\$	4,167	\$	6,250
39	4	1	\$	4,903	\$	7,097	\$	12,000	\$	-	\$	12,000	\$	3,000	\$	4,138
40	3	1	\$	4,488	\$	7,512	\$	12,000	\$	9,750	\$	21,750	\$	4,000	\$	6,667
41	4	1	\$	7,444	\$	6,000	\$	13,444	\$	14,327	\$	27,771	\$	3,361	\$	3,361
44	5	1	\$	7,000	\$	9,000	\$	16,000	\$	-	\$	16,000	\$	3,200	\$	4,324
45	11	3	\$	14,000	\$	10,000	\$	24,000	\$	10,000	\$	34,000	\$	2,182	\$	3,000
46	8	1	\$	19,100	\$	8,900	\$	28,000	\$	-	\$	28,000	\$	3,500	\$	4,000
18	10	2	\$	15,243	\$	9,840	\$	25,083	\$	26,500	\$	51,583	\$	2,508	\$	3,583
Avg	6.7	1.4	\$	10,954	\$	12,854	\$	23,808	\$	7,585	\$	31,392	\$	3,590	\$	4,745

Installation Summary

	Average
Zones per site	6.7
Living units per site	1.4
Zones per apt.	5.4
Heat pump equip. cost per site	\$10.954
Heat pump labor cost per site	\$12.854
Heat pump total cost per site	\$23,808
Weatherization cost per site	\$7 585
Total cost per site	\$7,385
Heat nump cost per zone	\$51,592
	\$3,590
Heat pump cost per ton	\$4,745
Heating load (Btu/hr) per site	55,418
heating capacity (Btu/hr) @ 17 per site	68,322
heating capacity (Btu/hr) @ 47 per site	75,531
Capacity/Load avg. of all sites	129%

HISTOGRAMS - CAPACITY

HISTOGRAMS - COST

\$ weatherization

Costs are before incentives and discounts

HISTOGRAMS - COP

COP with envelope

COP without envelope

HISTOGRAMS - SAVINGS

\$ savings/site

MMBTU savings/site

Savings are annual

M&V Summary

	Avg	Av	g Oil (7)	Avg	g Gas (6)
Old fuel	All		Oil		Gas
Site MMBTU savings	96		122		70
Savings lbs. CO2 emissions	13,979		19,859		8,099
\$avings of HP only	\$ (221)	\$	(132)	\$	(309)
\$avings entire	\$ 200	\$	463	\$	(63)
COP accounting for envelope	3.5		3.7		3.3
COP raw	2.4	2.4 2.		2.4	

If you leave it they will use it

Site	Reduced existing system use by	Existing System Status			
1	81%	In-Place			
3	80%	In-Place			
5	82%	In-Place			
10	84%	In-Place			
12 owner	74%	In-Place			
12 tenant	84%	In-Place			
14	100%	Removed			
18	100%	Removed			
19	100%	Removed			
21	69%	In-Place			
23	100%	In-Place			
25	100%	Not Operational			
31	68%	In-Place			
32	100%	Removed			
35	66%	In-Place			
39	100%	In-Place			
40	100%	Removed			
41	-18%	In-Place			
44	100%	Removed			
45	100%	Removed			
46	37%	In-Place			

Could integrated controls have improved performance?

SURVEY Q1- HOW IMPORTANT WERE THE FOLLOWING IN YOUR DECISION TO INSTALL AN AIR-SOURCE HEAT PUMP SYSTEM?

SURVEY

Perceived distribution of comfort throughout home during winter for previous heating system and ccASHP

SURVEY

Perceived distribution of comfort throughout home during summer for previous cooling system and ccASHP

MOTIVATIONS

Owner or single decision maker

- Reduce operating costs
- Maximize return-oninvestment of planned replacement
- Increase properties marketability

Tenants or other stakeholders

- Comfort
- Health
- Do not increase costs

Installation Problems

Installation Problems

	Type of defect	Sites affected
	Incorrect placement of condensers (stacking)	3
Outdoor unit	Incorrect support/fastening of condensers (blocks, scrap wood)	3, 12, 21, 10
	Ground clearance of condensers	5, 21, 10
	Condensate tube drains to improper location	12, 10
Condensate	Condensate leak at evaporator	14, 10
	Condensate tubing – flex plastic instead of copper/PVC	3, 21, 10
	Inadequate sealing of wall penetrations	5
Refrigerant Lines	Line cover (or portion) missing	12
	Inadequate or missing refrigerant pipe insulation	5, 14
	Refrigerant leak	5, 3
Other	Damage to evaporator / lubricant leakage	12
	Noisy outdoor unit	10

LESSONS

SALES

- Let homeowner talk about rooms and spots that cause discomfort.
- Pitch air handler locations and envelope measures to address biggest complaints.
- Clearly lay out how the work area will be restored to acceptable condition at the agreed budget. Will lines be surface mounted or recessed?

PLANNING

- Agree to equipment selection and placement locations. Mark locations on the walls.
- Under-promise and over-deliver on completion date.
- Agree on house rules regarding job site cleanliness.

LESSONS

IMPLEMENTATION

- Respect house rules.
- Assemble a multitalented team that is problem solving-focused.
- Offer solutions to solve roadblocks, not demands for more money.
- Finger-pointing diminishes client's confidence.

OPERATIONS

- Set-up operation modes for all zones.
- Provide tutorial for proper heating usage. Treat this no differently than boiler and furnace job sign-off.
- Emphasize the importance of maintenance. Call back seasonally to schedule service.

Successful implementation and healthy equipment generates loyalty and referrals.

Takeaways

- Comfort is major motivator
- Design details crucial (aesthetics of line sets) and impacts costs
- QA important
- Occupant education and expectations
- Weatherization underappreciated
- Right sizing possible, but small homes challenging
- Cooling and heating loads similar in attached homes
- If fossil fuel system left in place, good chance it will be used
- Use of multiple systems will increase energy consumption

Ongoing Questions

- What was the cause of low effective COPs?
- Did envelope improvements impact sizing?
- How would using single zone equipment impact costs, design, performance?
- Could integrated controls improve performance?

Jordan Dentz, The Levy Partnership, Inc. jdentz@levypartnership.com

Julie Liu, Centsible House julie@centsiblehouse.com

Hugh Henderson, Frontier Energy/Owahgena Consulting hugh.henderson@owahgenaconsulting.com